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Abstract

In this paper the transverse vibrations of a standing, uniform Timoshenko beam will be considered. Due to gravity and

the self-weight of the beam a linearly varying compression force is acting on the beam. It will be assumed that this

compression force is small but not negligible. The transverse vibrations of the beam can be described by an initial-

boundary value problem. Approximations of the solution of this problem will be constructed by using a multiple time-

scales perturbation method. Also approximations of the frequencies will be obtained. Moreover, the effect of the linearly

varying compression force on the magnitude of the frequencies of the oscillation modes of the beam will be discussed.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Many structures, such as bridges, buildings, and spacecraft arms can be modelled as flexible beams. The
vibrations of a bridge can be modelled as a horizontal beam. In Ref. [1] a horizontal beam has been considered
as a model for a bridge. The vibrations of a tall building can be modelled as a vertical beam. A vertical beam in
a gravity field is subjected to an axial force due to the self-weight of the beam. A standing beam is subjected to
a compressive axial force and a hanging beam to a tensile axial force. An example of a standing beam is a tall
building and an example of a hanging beam is a stiff elevator cable. The theory of Euler–Bernoulli and
Timoshenko can be used to describe the vibrations of a beam. The model that describes the transverse
vibrations of a vertical beam, due to the bending moment only, is the Euler–Bernoulli beam theory. This
theory is not sufficient for short beams or for the higher modes of slender beams because of ignoring the shear
force and the rotatory moment of inertia. The Timoshenko beam theory includes the effects of shear force and
rotatory inertia.

In Ref. [2] the mode shape differential equation describing the transverse vibrations of a hanging
Euler–Bernoulli beam under linearly varying axial force has been derived. It has been concluded that the
equation can not be solved exactly. In Ref. [2] approximate analytical solutions have been determined by using
the Ritz–Galerkin method with gravity-free eigenfunctions. Moreover, in Ref. [2], approximate analytical
solutions of this problem have been determined for the case that gravity is dominating by using the method of
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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matching asymptotic expansions. In Ref. [3] this method have been applied to a similar problem, that is, to the
problem of a slightly stiff pendulum carrying a small bob. Also it has been shown in Ref. [2] that a
compression force reduces the frequencies and that the influence of the gravity on the frequencies decreases by
increasing mode number. In Ref. [4] the natural frequencies of standing and hanging Euler–Bernoulli beams
have been studied. The Frobenius method has been used to solve the mode shape differential equation of a
uniform hanging beam. It has been concluded in Ref. [4] that the natural frequencies of the hanging and of the
standing beam are noticeably different. In Ref. [5] buckling of an Euler–Bernoulli beam under self-weight has
been studied. In Refs. [6,7] the partial differential equation describing the vibrations of a standing
Euler–Bernoulli beam with tip-mass has been derived. A multiple time-scales perturbation method has been
used to solve this problem for the case that the influence of the axial load is small. It has been concluded in
Refs. [6,7] that increasing the gravity effect (i.e. increasing compression force) and increasing the mass of the
tip-mass reduces the natural frequencies. In Ref. [8] Hamilton’s principle has been used to obtain the
governing equations of a vertically hanging Timoshenko beam under gravity as a model for flexible space
structures. The study in Ref. [8] is restricted to hanging beams, since standing beams under dominating gravity
load will buckle due to its own weight. In Ref. [8], by using a finite element approach, the vibrational
behaviour of the flexible beam has been determined. It has been shown that the frequencies of the vibration
modes of the beam increase with increasing gravity effect and that the influence of the gravity on these
frequencies decreases with increasing mode number. Also it has been concluded in Ref. [8] that the inclusion of
shear deformation and rotatory inertia reduces the increases (due to the tensile axial force which is acting on
the beam) of the frequencies in the higher order modes of the hanging beam. These results have also been
found in Ref. [9], where the vibrations of a hanging Timoshenko beam have been studied by using the
Galerkin method. In Ref. [10] uniform and non-uniform beams with various types of boundary conditions and
with axial force have been studied. And in Ref. [11] the transverse buckling of a rotating Timoshenko beam
have been studied for clamped–free and clamped–clamped boundary conditions.

In this paper the vibrations of a standing, uniform, cantilevered beam as a simple model for a tall building
will be studied. The beam is subjected to a linearly varying compression force. Inclusion of this compression
force into the beam model reduces the magnitude of the frequencies of the beam. The aim of this paper is to
examine this decrease in magnitude of the frequencies, more precisely, to study the influence of the beam
parameters on this decrease. It will be assumed that the compression force due to gravity is small but not
negligible. The Timoshenko beam theory will be used to model the transverse vibrations of the beam. Now the
vibrations can be described by an initial-boundary value problem. The multiple time-scales perturbation
method will be used to obtain explicit approximations of the solutions of this initial-boundary value problem.
Moreover, explicit approximations of the natural frequencies will be obtained. Note that the methods used in
this paper are not restricted to standing beams, but can also be applied to hanging beams. This is the case of a
beam under linearly varying tensile force.

This paper is organized as follows. Firstly, in Section 2, the governing partial differential equations
describing the transverse vibrations of a standing, uniform, cantilevered Timoshenko beam will be derived.
Secondly, in Section 3, the eigenvalue problem of a standing, uniform, cantilevered Timoshenko beam will be
derived. It will be shown that the eigenfunctions form an orthogonal set and that the eigenvalues are real-
valued and positive for sufficient small gravity effect. Then, in Section 4, the gravity effect will be neglected.
The initial-boundary value problem describing the transverse vibration of a uniform, cantilevered Timoshenko
beam will be solved exactly. In Section 5 the partial differential equations describing the vibrations of a
standing, uniform, cantilevered Timoshenko beam will be solved approximately by using a multiple time-
scales perturbation method. Also the effect of gravity on the frequencies and the oscillation modes will be
derived. Finally, in Section 6 conclusions will be drawn and remarks will be made.

2. Equations of motion

In this section the linearized equations of motion that describe the transverse vibration and the rotation of
the cross-section of a vertical, uniform, cantilevered beam (see Fig. 1) will be derived by using the
Bress–Timoshenko beam theory and the classical dynamic equilibrium method. Due to gravity and due to the
self-weight of the beam a linearly varying axial compression force is acting on the beam. To describe the effect
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Fig. 1. A simple model of a standing, cantilevered beam.
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of the axial force it is assumed in this paper that the axial force is tangential to the slope of the beam. It can
also be assumed that the axial force is normal to the direction of the shear force. In Ref. [12] both cases, the
axial force is tangential to the axis of the slope of the beam and the axial force is normal to the shearing force,
have been considered and for both cases the equations of motion have been derived. But in Ref. [12] nothing
has been said on which method is more accurate. However, in Ref. [13] it has been indicated that the equations
of motion which follows from the first assumption are more accurate. Therefore, also in this paper it is
assumed that the axial force is tangential to the slope of the beam. Note that also in Refs. [10,14] both cases
have been considered. For Bress–Timoshenko beam theory the total slope of the beam, the bending moment,
and the shearing force are given by (see Ref. [15])

qZðX ; tÞ
qX

¼ cðX ; tÞ þ bðX ; tÞ, (1)

MðX ; tÞ ¼ EI
qcðX ; tÞ

qX
, (2)

V ðX ; tÞ ¼ �k0bðX ; tÞAG ¼ �k0AG
qZðX ; tÞ

qX
� cðX ; tÞ

� �
, (3)

respectively, where MðX ; tÞ is the moment, V ðX ; tÞ is the shear force, E is the Young modulus, I is the moment
of inertia of the cross-section, k0 is the shear coefficient depending on the shape of the cross-section, G is the
modulus of elasticity in shear or the modulus of rigidity, A is the cross-sectional area, ZðX ; tÞ is the deflection
of the beam in Y-direction (see Fig. 2), cðX ; tÞ is the cross-sectional rotation angle due to bending, bðX ; tÞ is
the shear angle, t is the time, and X is the position along the beam. From the Timoshenko beam element
(see Fig. 2) a dynamic equilibrium for the forces in Y-direction and the moments about point n acting on this
beam element can be obtained. The angles cðX þ dX ; tÞ and cðX ; tÞ, and the slopes qZðX þ dX ; tÞ=qX and
qZðX ; tÞ=qX are assumed to be small. By linearizing the so-obtained equilibria with respect to cðX þ dX ; tÞ,
cðX ; tÞ, qZðX þ dX ; tÞ=qX , and qZðX ; tÞ=qX it follows that the equilibrium for the forces is approximately
given by

V ðX ; tÞ � V ðX þ dX ; tÞ � rAdX
q2ZðX þ dX=2; tÞ

qt2
þ SðX Þ

qZðX ; tÞ
qX

� SðX þ dX Þ
qZðX þ dX ; tÞ

qX
¼ 0 (4)

and that the equilibrium for the moments is approximately given by

MðX ; tÞ �MðX þ dX ; tÞ þ V ðX ; tÞdX � rA
ðdX Þ2

2

q2ZðX þ dX=2; tÞ
qt2

þ rI dX
q2cðX þ dX=2; tÞ

qt2
¼ 0, (5)
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Fig. 2. Timoshenko beam element.
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where SðX Þ ¼ grAðL� X Þ, g is the acceleration due to gravity, L the length of the beam, and r is the density
of the beam. Now substitute the Taylor series of V ðX þ dX Þ about X into Eq. (4), and substitute the Taylor
series of MðX þ dX Þ about X into Eq. (5). Then divide the so-obtained equations by dX , and take the limit
dX ! 0, to obtain the following equations:

qV ðX ; tÞ
qX

þ rA
q2ZðX ; tÞ

qt2
þ

q
qX

SðX Þ
qZðX ; tÞ

qX

� �
¼ 0, (6)

qMðX ; tÞ
qX

� V ðX ; tÞ � rI
q2cðX ; tÞ

qt2
¼ 0. (7)

The boundary conditions of a cantilevered beam are given by

Zð0; tÞ ¼ cð0; tÞ ¼ 0, (8)

MðL; tÞ ¼ V ðL; tÞ ¼ 0. (9)

By substituting Eqs. (2) and (3) into Eqs. (6)–(9) the following coupled partial differential equations and
boundary conditions describing the deflection and the angle of rotation of a uniform, cantilevered
Timoshenko beam are obtained:

k0AGðZXX � cX Þ � rAZtt � grA½ðL� X ÞZX �X ¼ 0, (10)

EIcXX þ k0AGðZX � cÞ � rIctt ¼ 0, (11)

Zð0; tÞ ¼ cð0; tÞ ¼ 0, (12)

EIcX ðL; tÞ ¼ 0, (13)
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k0AGðZX ðL; tÞ � cðL; tÞÞ ¼ 0. (14)

To put the equations of motion (10)–(14) in a non-dimensional form the following substitutions x ¼ X=L,
u ¼ Z=L, and t ¼ kt, where k ¼ 1=L2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=rA

p
, will be used. By applying these substitutions to Eqs. (10)–(14)

the following initial-boundary value problem is obtained:

cxx þ
1

r2s2

� �
ðux � cÞ � r2ctt ¼ 0; 0oxo1; t40, (15)

1

r2s2

� �
ðuxx � cxÞ � utt � �½ ~SðxÞux�x ¼ 0; 0oxo1; t40, (16)

uð0; tÞ ¼ cð0; tÞ ¼ 0; tX0, (17)

cxð1; tÞ ¼ 0; tX0, (18)

uxð1; tÞ � cð1; tÞ ¼ 0; tX0, (19)

uðx; 0Þ ¼ f ðxÞ and utðx; 0Þ ¼ hðxÞ; 0oxo1, (20)

cðx; 0Þ ¼ pðxÞ and ctðx; 0Þ ¼ qðxÞ; 0oxo1, (21)

where ~SðxÞ ¼ 1� x, r2 ¼ I=AL2; s2 ¼ E=k0G, and � ¼ grAL3=EI , and where f ðxÞ, hðxÞ, pðxÞ, and qðxÞ are the
initial displacement of the beam in horizontal direction at position x, the initial velocity of the beam in
horizontal direction at position x, the initial rotation angle (due to bending) at position x, and the initial
angular velocity at position x, respectively. It should be observed that �; r2 and s2 are dimensionless
parameters. The parameter � is the gravity parameter, which may be regarded as the ratio of the weight
multiplied by the square of the length to the flexural rigidity (see also Ref. [8]). Note that from Eqs. (15)–(21)
the equations of motion, which describes the vibrations of a hanging beam, can be obtained by assuming that
the gravity force acts in opposite direction. In this paper it will be assumed that the gravity parameter is small,
that is, 0o�51. The parameter 1=r is the slenderness ratio and 1=rs is the shear/flexural rigidity ratio. The
parameters r2 and s2 are assumed to be �-independent. In this paper the effect of the parameters �; r2; and s2 on
the frequencies will be studied. Note that by eliminating c from Eqs. (15)–(21) an initial-boundary value
problem for u can be obtained. By substituting s ¼ 0 into the so-obtained problem the problem that describes
the transverse vibrations of a Rayleigh beam can obtained. If additionally r ¼ 0 is substituted into this
problem the equations of motion of a cantilevered Euler–Bernoulli beam are obtained.

3. A perturbation method

In this section the initial-boundary value problem (15)–(19) will be considered. This problem describes the
transverse vibrations of a standing Timoshenko beam. Now look for non-trivial solutions of the system
(15)–(19) in the form uðx; tÞ ¼ UðxÞT1ðtÞ and cðx; tÞ ¼ ĈðxÞT2ðtÞ. Note that uðx; tÞ � 0 only leads to cðx; tÞ �
0 and that cðx; tÞ � 0 only leads to uðx; tÞ � 0. By substituting uðx; tÞ ¼ UðxÞT1ðtÞ and cðx; tÞ ¼ ĈðxÞT2ðtÞ into
Eq. (15) it follows that

ðĈðxÞ � r2s2Ĉ00ðxÞÞT2ðtÞ þ r4s2ĈðxÞT 002ðtÞ ¼ U 0ðxÞT1ðtÞ, (22)

where the primes denote differentiation with respect to the independent variable, whether x or t. Let c1; c2 2 C.
From Eq. (22) it follows that the case T1ðtÞac1T2ðtÞ and T1ðtÞac2T 002ðtÞ leads to U 0ðxÞ � 0. Hence, from
Eq. (17), it follows that UðxÞ � 0. Therefore, following the argument as given above Eq. (22), it follows that
the case T1ðtÞac1T2ðtÞ and T1ðtÞac2T 002ðtÞ only leads to trivial solutions. If T1ðtÞac1T2ðtÞ and T1ðtÞ ¼ c2T

00
2ðtÞ

it follows from Eqs. (17)–(19) and (22) that Ĉ� r2s2Ĉ00 ¼ 0 and Ĉð0Þ ¼ Ĉð1Þ ¼ Ĉ0ð1Þ ¼ 0. Hence also this
case only leads to trivial solutions. Therefore, from Eq. (22), the case T1ðtÞac1T2ðtÞ and T1ðtÞac2T 002ðtÞ, and
the case T1ðtÞac1T2ðtÞ and T1ðtÞ ¼ c2T

00
2ðtÞ it follows that Eqs. (15)–(21) can only have non-trivial solutions if

there exists a constant c1 2 Cnf0g such that T1ðtÞ ¼ c1T2ðtÞ. Now, look for non-trivial solutions of systems
(15)–(19) in the form uðx; tÞ ¼ UðxÞTðtÞ and cðx; tÞ ¼ CðxÞTðtÞ, where c1CðxÞ ¼ ĈðxÞ. By substituting this into
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Eq. (15) it follows that

T 00

T
¼

U 0ðxÞ � ðCðxÞ � r2s2C00ðxÞÞ
r4s2CðxÞ

¼ �l, (23)

where l 2 C is a complex-valued separation constant. Now, substitute uðx; tÞ ¼ UðxÞTðtÞ, cðx; tÞ ¼ CðxÞTðtÞ,
and T 00 ¼ �lT into Eqs. (15)–(19) to obtain the following eigenvalue problem:

C00 þ
1

r2s2
ðU 0 �CÞ ¼ �r2lC, (24)

1

r2s2
ðU 00 �C0Þ � �½ð1� xÞU 0�0 ¼ �lU , (25)

Cð0Þ ¼ Uð0Þ ¼ 0, (26)

C0ð1Þ ¼ 0, (27)

U 0ð1Þ �Cð1Þ ¼ 0. (28)

The eigenvalue l corresponds to the eigenfunction UðxÞ defined by

UðxÞ ¼
U

C

� �
. (29)

Multiply the left-hand sides of Eqs. (24) and (25) by the non-trivial functions CðxÞ and UðxÞ, respectively, sum
these so-obtained expressions, and integrate the so-obtained sum by parts with respect to x from 0 to 1, to
obtain Z 1

0

C00 þ
1

r2s2
ðU 0 �CÞ

� �
Cþ

1

r2s2
ðU 00 �C0 � �r2s2½ð1� xÞU 0�0ÞU

� �
dx

¼

Z 1

0

C00 þ
1

r2s2
ðU 0 �CÞ

� �
Cþ

1

r2s2
ðU 00 �C0 � �r2s2½ð1� xÞU 0�0ÞU

( )
dx. (30)

Now, substitute Eqs. (24) and (25) into Eq. (30) to obtain

ðl� lÞ
Z 1

0

fUðxÞUðxÞ þ r2CðxÞCðxÞgdx ¼ 0. (31)

Since UU ¼ jU j2X0, CC ¼ jCj2X0, and because the functions UðxÞ and CðxÞ are not allowed to be
identically equal to zero the integrand in Eq. (31) is positive. Therefore l� l ¼ 0, which implies that l is real.
Since the eigenvalues l, and the parameters (r2, s2, and �) in the differential Eqs. (24) and (25), and the
boundary conditions (26) and (28) are real-valued, it follows that the eigenfunction UðxÞ can be chosen to
be real-valued. Let the vector function UiðxÞ be a vector solution of Eqs. (24)–(28) corresponding to the
eigenvalue li and let UjðxÞ be a vector solution of Eqs. (24)–(28) corresponding to the eigenvalue lj. Then,
again by using integration by parts it follows that

ðli � ljÞ

Z 1

0

fUiUj þ r2CiCjgdx ¼ 0. (32)

Hence
R 1
0
fUiUj þ r2CiCjgdx ¼ 0 if lialj. So, eigenfunctions corresponding to different eigenvalues are

orthogonal with respect to the inner product defined by

hUi;Uji ¼

Z 1

0

fUiUj þ r2CiCjgdx. (33)

Now it will be shown that the eigenvalues are positive for sufficiently small values of �. Multiply Eq. (24) by
CðxÞ, multiply Eq. (25) by UðxÞ, sum the so-obtained results, and integrate the so-obtained sum with respect
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to x from 0 to 1, to obtainZ 1

0

ðC0ðxÞÞ2 þ
1

r2s2
ðU 0ðxÞ �CðxÞÞ2 � �ð1� xÞðU 0ðxÞÞ2

� �
dx ¼ l

Z 1

0

fU2ðxÞ þ r2C2ðxÞgdx. (34)

It should be observed that the integral at the right-hand side of Eq. (34) is positive. Now it will be shown that
the left-hand side of Eq. (34) is positive for sufficiently small values of �. Then it can be concluded that the
eigenvalues are positive for sufficiently small values of �. Using CðxÞ ¼

R x

0 C0ðsÞds the following inequality on
0oxo1 can be derived:

jCðxÞjp
Z x

0

jC0ðsÞjdsp
Z 1

0

jC0ðxÞjdx. (35)

Using the Cauchy–Schwarz inequality it follows that

ðCðxÞÞ2p
Z 1

0

jC0ðxÞjdx

� �2

p
Z 1

0

ðC0ðxÞÞ2 dx. (36)

Furthermore, it should be observed that from ðU 0ðxÞ � ð1þ 2r2s2ÞCðxÞÞ2 ¼ ð1þ 2r2s2ÞðU 0ðxÞ �CðxÞÞ2 þ
2r2s2ð1þ 2r2s2ÞC2ðxÞ � 2r2s2ðU 0ðxÞÞ2 it follows that

ðU 0ðxÞÞ2p
1þ 2r2s2

2r2s2

� �
ðU 0ðxÞ �CðxÞÞ2 þ ð1þ 2r2s2ÞC2ðxÞ. (37)

Substitution of Eq. (37) into the left-hand side of Eq. (34) yieldsZ 1

0

C0ðxÞð Þ
2
þ

1

r2s2
ðU 0ðxÞ �CðxÞÞ2 � �ð1� xÞðU 0ðxÞÞ2

� �
dx

X

Z 1

0

fðC0ðxÞÞ2 � �ð1þ 2r2s2Þð1� xÞC2ðxÞgdx

þ
1

r2s2

Z 1

0

1�
�

2
ð1þ 2r2s2Þð1� xÞ

� �
ðU 0ðxÞ �CðxÞÞ2

n o
dx. (38)

Then, by using the inequality
R 1
0 fð1� xÞðU 0ðxÞ �CðxÞÞ2gdxp

R 1
0 ðU

0ðxÞ �CðxÞÞ2 dx and inequality (36), it
follows that inequality (38) leads toZ 1

0

ðC0ðxÞÞ2 þ
1

r2s2
ðU 0ðxÞ �CðxÞÞ2 � �ð1� xÞðU 0ðxÞÞ2

� �
dx

X 1� �ð1þ 2r2s2Þ

Z 1

0

ð1� xÞdx

� �� � Z 1

0

ðC0ðxÞÞ2 dx

� �

þ
1

r2s2

Z 1

0

1�
�

2
ð1þ 2r2s2Þ

� �
ðU 0ðxÞ �CðxÞÞ2

n o
dx

¼ 1�
�

2
ð1þ 2r2s2Þ

� � Z 1

0

ðC0ðxÞÞ2 þ
1

r2s2
ðU 0ðxÞ �CðxÞÞ2

� �
dx

� �
. (39)

Hence from Eq. (34), inequality (39), and since C0ðxÞÞ2 þ ð1=r2s2ÞðU 0ðxÞ �CðxÞÞ2 � 0 only leads to trivial
solutions, it follows that the eigenvalues are certainly positive if

�o
2

1þ 2r2s2
. (40)

It will be assumed that the gravity parameter, �, is a small parameter, that is, 0o�51. For this case the
eigenvalues will be positive.

By eliminating c from Eqs. (15)–(21) an initial-boundary value problem for u can be obtained. By
substituting r ¼ s ¼ 0 into the so-obtained problem the equations of motion of a cantilevered Euler–Bernoulli
beam are obtained. Hence, from Eq. (40), it follows that the eigenvalues of a standing, cantilever
Euler–Bernoulli beam are certainly positive if �o2. Note that this result also has been found in Ref. [6].
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Although it has been shown that the eigenvalues ðlnÞ are real-valued and positive for all sufficiently small
values of �, and that the corresponding eigenfunctions ðUnÞ can be chosen to be real-valued and are orthogonal
with respect to the inner product (33), systems (15)–(19) cannot be solved exactly. Systems (15)–(19) cannot be
solved exactly because of the linearly varying axial compression force acting on the beam. In this paper a
multiple time-scales perturbation method will be applied to solve problem (15)–(19) approximately. The reader
is referred to the book of Nayfeh and Mook [16] for a description of this method. In Section 4 the case � ¼ 0
will be considered first, and in Section 5 problems (15)–(21) with � sufficiently small will be solved
approximately.

4. The case without gravity ð� ¼ 0Þ

In this section the transverse vibrations of a Timoshenko beam will be considered. The gravity effect is
neglected. These vibrations can be described by Eqs. (15)–(21) with � ¼ 0. In the previous section it has been
shown that the separated solutions of the initial-boundary value problem (15)–(19) can be found, that is,
solutions uðx; tÞ in the form UðxÞTðtÞ, and solutions cðx; tÞ in the form CðxÞTðtÞ, where T 00 þ lT ¼ 0, and
where l 2 C is a separation constant. Now, by substituting this into Eqs. (15)–(19) with � ¼ 0 the following
problem is obtained:

C00 þ
1

r2s2
ðU 0 �CÞ ¼ �r2lC, (41)

1

r2s2
ðU 00 �C0Þ ¼ �lU , (42)

Cð0Þ ¼ Uð0Þ ¼ 0, (43)

C0ð1Þ ¼ 0, (44)

U 0ð1Þ �Cð1Þ ¼ 0. (45)

In Ref. [17] this problem has been studied for the case r4s2la1. In Ref. [17], for the case r4s2la1, a so-called
characteristic equation (also called a frequency equation) and equations for the eigenfunctions corresponding
to simple eigenvalues have been obtained. In this section the case r4s2la1 and the case r4s2l ¼ 1 will be
discussed. For the case r4s2la1 the characteristic equation will be obtained. Furthermore, it will be shown
that an eigenvalue of problem (41)–(45) can have two independent eigenfunctions, such an eigenvalue is called
a double eigenvalue (see Ref. [18]). Moreover, it will be shown that Eqs. (41)–(45) can only have such a double
eigenvalue if s2 ¼ 1. For the case r4s2l ¼ 1 it will be shown that double eigenvalues do not exist. Furthermore,
it will be shown that l ¼ 1=r4s2 is only an eigenvalue for specific values of the parameters r and s.
Also the eigenfunctions for the case r4s2l ¼ 1 will be obtained. Next, in this section, the solution of the initial-
boundary value problem (15)–(21) with � ¼ 0 will be given. Lastly, approximate forms of the eigenvalues will
be derived.

Firstly the case r4s2la1 will be studied. If r4s2la1 the solution of Eqs. (41)–(42) can be given by

ÛðxÞ ¼
U

C

� �
, (46)

where

UðxÞ ¼ c0 coshðo1xÞ þ c1 sinhðo1xÞ þ c2 cosðo2xÞ þ c3 sinðo2xÞ, (47)

CðxÞ ¼ d0 coshðo1xÞ þ d1 sinhðo1xÞ þ d2 cosðo2xÞ þ d3 sinðo2xÞ, (48)

where

o1;2 ¼

ffiffiffiffiffiffiffi
r2l
2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1þ s2Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� s2Þ2 þ

4

r4l

rs
, (49)
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and where the constants ci and di, where i ¼ 0; 1; 2; 3, in Eqs. (47) and (48) are unknown so far. Note that, in
the previous section, it has been shown that the eigenvalue l is real-valued and positive. From Eq. (42) it
follows that the constants ci depend on di in the following way:

ðo2
1 þ r2s2lÞc0 ¼ o1d1, (50)

ðo2
1 þ r2s2lÞc1 ¼ o1d0, (51)

ðr2s2l� o2
2Þc2 ¼ o2d3, (52)

ðo2
2 � r2s2lÞc3 ¼ o2d2. (53)

By using Eq. (41) similar relations between ci and di can be found. Now, from the boundary conditions
(43)–(45), it follows that a solution of problems (41)–(45) can only exist if Ad ¼ 0, where d ¼ ½d0; d3; d2; d1�

T,
and where

A ¼

1 0 1 0

0 1 0
o1

o2
z

o1 sinhðo1Þ o2 cosðo2Þ �o2 sinðo2Þ o1 coshðo1Þ

z coshðo1Þ sinðo2Þ cosðo2Þ z sinhðo1Þ

0
BBBB@

1
CCCCA, (54)

where

z ¼
r2s2l� o2

2

o2
1 þ r2s2l

¼ �
o2

1 þ r2l
o2

1 þ r2s2l
. (55)

By elementary calculations it follows that A is row equivalent to

~A ¼

1 0 1 0

0 1 0
o1

o2
z

0 0 �o2 sinðo2Þ � o1 sinhðo1Þ o1ðcoshðo1Þ � z cosðo2ÞÞ

0 0 cosðo2Þ � z coshðo1Þ z sinhðo1Þ �
o1

o2
sinðo2Þ

� �

0
BBBBBB@

1
CCCCCCA
. (56)

It should be observed that, for the case r4s2la1, a solution can only exist if the determinant of ~A is equal to
zero. By putting this determinant equal to zero the characteristic equation is obtained, and is given by (see also
Ref. [17])

hrsðlÞ � 2þ ð2þ r4ð1� s2Þ2lÞ coshðo1Þ cosðo2Þ �
r2

ffiffiffi
l
p
ð1þ s2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r4s2l
p

 !
sinhðo1Þ sinðo2Þ ¼ 0. (57)

Now, the eigenvalues ln, such that r4s2lna1, are given implicitly by the positive roots of the characteristic
equation. Now it will be shown that an eigenvalue of problems (41)–(45) can have two independent
eigenfunctions. From Eq. (56) it follows that a double eigenvalue can only exist if the entries of the lower right
2� 2 submatrix are equal to zero (see also Ref. [19]). Now this case will be considered. From ~A33 ¼ ~A44 ¼ 0
(where ~Aij is the ði; jÞ-entry in ~A) it follows that sinhðo1Þ ¼ sinðo2Þ ¼ 0. Consequently, it follows that
coshðo1Þ ¼ �1 and cosðo2Þ ¼ �1. Then from ~A34 ¼ ~A43 ¼ 0 it can be concluded that a double eigenvalue can
only exist if s2 ¼ 1, o1 ¼ inp, where n 2 N, and o2 ¼ mp, where m ¼ nþ 2k þ 1, and k 2 Z. Finally, from
o1 ¼ inp,o2 ¼ mp, s2 ¼ 1, and Eq. (49), it follows that double eigenvalues can only exist if

2
ffiffiffi
l
p
¼ ðm2 � n2Þp2, (58)

2r2l ¼ ðn2 þm2Þp2, (59)
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where m ¼ nþ 2k � 1 and n; k 2 N. Hence it follows that l ¼ p4=4ðm2 � n2Þ
2, where m ¼ nþ 2k � 1 and

n; k 2 N, is an double eigenvalue if r2 ¼ 2ðn2 þm2Þ=p2ðm2 � n2Þ
2 and s2 ¼ 1.

Now the eigenfunctions for the case r4s2la1 will be considered. The eigenfunctions corresponding to simple
eigenvalues lna1=r4s2 have been given in Ref. [17], and are given by ÛnðxÞ ¼ ½UnðxÞ;CnðxÞ�

T, where

UnðxÞ ¼ Dn coshðo1;nÞ �
1

zn

cosðo2;nÞ

� �
ðcoshðo1;nxÞ � cosðo2;nxÞÞ

	

�
o2;n

o1;n
sinhðo1;nÞ � sinðo2;nÞ

� �
o1;n

o2;n
sinhðo1;nxÞ þ

1

zn

sinðo2;nxÞ

� �

, (60)

CnðxÞ ¼ Hn

1

zn

coshðo1;nÞ � cosðo2;nÞ

� �
ðcoshðo1;nxÞ � cosðo2;nxÞÞ

	

�
o1;n

o2;n
sinhðo1;nÞ þ sinðo2;nÞ

� �
o2;n

o1;n

1

zn

sinhðo1;nxÞ � sinðo2;nxÞ

� �

, (61)

where zn is given by Eq. (55), and where Dn and Hn are connected by Eqs. (47)–(48) and (50)–(53). The general
solution of Eqs. (41)–(45) corresponding to a double eigenvalue lna1=r4s2 is given by ÛnðxÞ ¼ ½UnðxÞ;
CnðxÞ�

T, where

UnðxÞ ¼ D1;n
o1;n

o2
1;n þ r2s2ln

sinhðo1;nxÞ þ
o2;n

r2s2ln � o2
2;n

sinðo2;nxÞ

 !

þD2;n
�o1

o2
1;n þ r2s2ln

coshðo1;nxÞ þ
zo1;n

r2s2ln � o2
2;n

cosðo2;nxÞ

 !
, (62)

CnðxÞ ¼ H1;nðcosðo2;nxÞ � coshðo1;nxÞÞ þH2;n sinhðo1;nxÞ � z
o1;n

o2;n
sinðo2;nxÞ

� �
, (63)

where D1;n;D2;n;H1;n and H2;n are connected by Eqs. (47), (48) and (50)–(53). Now, by putting D1;n ¼ 1 and
D2;n ¼ 0 into Eqs. (62) and (63), and by putting D1;n ¼ 0 and D2;n ¼ 1 into Eqs. (62) and (63) two independent
eigenfunction are found. Note that the values of H1;n and H2;n follow immediately from the values of D1;n and
D2;n, and Eqs. (50)–(53). These independent eigenfunctions are not necessarily orthogonal. But two
independent eigenfunctions corresponding to a double eigenvalue can be chosen orthogonal. The
Gram–Schmidt orthogonalization method can be used to accomplish this.

Now the case r4s2l ¼ 1 (i.e. o1 ¼ 0) will be considered. Substitute r4s2l ¼ 1 into Eqs. (41) and (42) to obtain

r2s2C00 þU 0 ¼ 0, (64)

r2ðU 00 �C0Þ ¼ �U . (65)

The solution of Eqs. (64) and (65) is given by ÛðxÞ ¼ ½UðxÞ;CðxÞ�T, where

UðxÞ ¼ c0 þ c2 cosðmxÞ þ c3 sinðmxÞ, (66)

CðxÞ ¼ d0 þ d1xþ d2 cosðmxÞ þ d3 sinðmxÞ, (67)

where m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2
p

=rs, and where the constants c0; c2; c3, and di, where i ¼ 0; 1; 2; 3, are unknown so far.
From Eq. (65) it follows that c0 ¼ r2d1, c2 ¼ �r2s2md3, and c3 ¼ r2s2md2. Then, by elementary calculations,
it follows that a solution of Eqs. (64), (65) and (43)–(45) can only exist if Âd ¼ 0, where d ¼ ½d0; d3; d2; d1�

T,



ARTICLE IN PRESS
J.W. Hijmissen, W.T. van Horssen / Journal of Sound and Vibration 314 (2008) 161–179 171
and where

Â ¼

1 0 1 0

0 1 0
�1

s2m

0 0 �m sinðmÞ 1þ
cosðmÞ

s2

0 0 s2 cosðmÞ þ 1 �1þ
sinðmÞ
m

0
BBBBBBBBB@

1
CCCCCCCCCA
. (68)

Now, it will be studied for which values of s and r double eigenvalues can occur. Double eigenvalues can only
exist if the entries of the lower right 2� 2 submatrix of Â are equal to zero. Since m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2
p

=rs40 it follows
from Eq. (68) that Â44o0. Hence double eigenvalues are not possible for the case r4s2l ¼ 1. Then, from
Eq. (68), it can be concluded that a solution of problem Eqs. (64), (65) and (43)–(45) can only exist if r and s

satisfy the following characteristic equation:

2s2 þ ð1þ s4Þ cosðmÞ ¼ s2m sinðmÞ, (69)

where m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2
p

=rs. Note that this equation also follows from Eq. (57) by taking the limit r4s2l! 1.
Therefore, l ¼ 1=r4s2 can only be an eigenvalue of problems (41)–(45) if it satisfies Eq. (57). Hence all the
eigenvalues of problems (41)–(45) are given by the roots of Eq. (57). The eigenfunction corresponding to the
eigenvalue l ¼ 1=r4s2 is given by ÛðxÞ ¼ ½UðxÞ;CðxÞ�T, where

UðxÞ ¼ D½sinðmÞð1� cosðmxÞÞ þ ðs2 þ cosðmÞÞ sinðmxÞ�, (70)

CðxÞ ¼ H ðs2 þ cosðmÞÞðcosðmxÞ � 1Þ þ m sinðmÞ
sinðmxÞ

m
þ s2x

� �	 

, (71)

and where D and H are connected by c0 ¼ r2d1, c2 ¼ �r2s2md3, c3 ¼ r2s2md2, Eqs. (66) and (67).
So far, it has been found that the eigenvalues of problems (41)–(45) are given implicitly by the positive roots

of Eq. (57). In Ref. [20] it has been shown that problems (41)–(45) has infinitely many, isolated eigenvalues
which all have a finite multiplicity. Now the nth positive eigenvalue (counting multiplicities) of problems
(41)–(45) will be denoted by ln. Furthermore, for each simple eigenvalue an eigenfunction ÛnðxÞ ¼

½UnðxÞ;CnðxÞ�
T has been found, which is given by Eqs. (60) and (61) for the case r4s2lna1, and by Eqs. (70)

and (71) for the case r4s2ln ¼ 1. In addition, it has been argued that for each double eigenvalue ln two
orthogonal eigenfunction can be obtained from Eqs. (62) and (63). In the previous section it has been shown
that the eigenfunctions corresponding to different eigenvalues are orthogonal with respect to the inner product
defined by Eq. (33). Hence the eigenfunctions ÛnðxÞ ¼ ½UnðxÞ;CnðxÞ�

T corresponding to the eigenvalues ln of
problems (41)–(45) form an orthogonal set with respect to the inner product defined by (33). Now, the solution
of initial boundary value problems (15)–(21) with � ¼ 0 will be constructed. From T 00n þ lnTn ¼ 0 the function
TnðtÞ can be determined for each eigenvalue ln. So, infinitely many non-trivial solutions of problems (15)–(19)
with � ¼ 0 have been determined. Using the superposition principle and the initial values (20) and (21) the
solution Cðx; tÞ ¼ ½uðx; tÞ;cðx; tÞ�T of the initial-boundary value problems (15)–(21) with � ¼ 0 is obtained, and
is given by

Cðx; tÞ ¼
X1
n¼1

ðAn cosð
ffiffiffiffiffi
ln

p
tÞ þ Bn sinð

ffiffiffiffiffi
ln

p
tÞÞUnðxÞ ¼

X1
n¼1

TnðtÞUnðxÞ, (72)

where ln is the nth positive root (counting multiplicities) of the characteristic equation (57), and where

An ¼

Z 1

0

f ðxÞfnðxÞ þ r2pðxÞjnðxÞdx, (73)

Bn ¼
1ffiffiffiffiffi
ln

p

Z 1

0

hðxÞfnðxÞ þ r2qðxÞjnðxÞdx, (74)
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and where UnðxÞ ¼ ½fnðxÞ;cnðxÞ�
T is given by

UnðxÞ ¼
ÛnðxÞR 1

0 fU
2
n þ r2C2

ngdx
� �1=2 , (75)

where ÛnðxÞ, for the case that ln is a simple eigenvalue, is given by Eqs. (60) and (61) for the case r4s2lna1,
and by Eqs. (70) and (71) for the case r4s2ln ¼ 1, and where ÛnðxÞ, for the case that ln is a double eigenvalue
can be obtained from Eqs. (62) and (63). The eigenfunctions UnðxÞ form an orthonormal set with respect to the
inner product defined by Eq. (33).

Now approximations of the roots of the characteristic equation (57) will be constructed. These approximate
forms of the roots ln will be used in Section 5 to determine the effect of the self-weight of the beam on the
natural frequencies. It should be observed that the case r4s2l51 and r4ð1� s2Þ2l51, and the case r4s2lb1 and
r4ð1� s2Þ2lb1 can be distinguished. In this paper, for simplicity, only the influence of r and l on the
approximate forms will be studied. It will be assumed that s2 ¼ E=k0G (the ratio of the Young modulus to the
shear coefficient depending on the shape of the cross-section multiplied by the modulus of elasticity in shear) is
fixed and not equal to one. Hence the case r4l51 and the case r4lb1 can be studied instead of the case
r4s2l51 and r4ð1� s2Þ2l51, and the case r4s2lb1 and r4ð1� s2Þ2lb1, respectively. Firstly the case r4l51
will be considered. For this case it follows by straightforward calculations that Definition (57) is
approximately given by

hrsðlÞ ¼ 2ð1þ coshð
ffiffiffi
l4
p
Þ cosð

ffiffiffi
l4
p
ÞÞ þ ð1þ

ffiffiffi
l4
p
ÞOðr2

ffiffiffi
l
p

e
ffiffi
l4
p

Þ, (76)

and Eq. (49) by o1;2 ¼
ffiffiffi
l4
p
ð1þ Oðr2

ffiffiffi
l
p
ÞÞ. Eq. (57) with r ¼ 0 is exactly the characteristic equation of the

cantilevered Euler–Bernoulli beam. The roots of Eq. (57) with r ¼ 0 are given by
ffiffiffiffiffi
l14
p
¼ 1:8751,

ffiffiffiffiffi
l24
p
¼ 4:6941,

and for the higher values
ffiffiffiffiffi
ln

4
p
� ðn� 1=2Þp. Now the case r4lb1 will be discussed. For this case it follows by

straightforward calculations that Definition (57) is approximately given by

hrsðlÞ ¼ r4ð1� s2Þ2l coshðo1Þ cosðo2Þ þ O
1

r4l

� �� �
, (77)

and that o2
1 ¼ r2lð�s2 þ ð1=r4ð1� s2ÞlÞ þ Oð1=r8l2ÞÞ, and o2

2 ¼ r2lð1þ ð1=r4ð1� s2ÞlÞ þ Oð1=r8l2ÞÞ. Now
approximations of the eigenvalues ln will be constructed. From Eq. (77) it follows that the case
h1rs
ðlÞ � coshðo1Þ þ Oð1=r4lÞ ¼ 0, and the case h2rs

ðlÞ � cosðo2Þ þ Oð1=r4lÞ ¼ 0 have to be considered. Note
that the case that coshðo1Þ and cosðo2Þ are both close to zero should also be considered. Since for this case it is
much more difficult to find asymptotic approximations of the eigenvalues this case will not be studied any
further in this paper. From h1rs

ðlÞ ¼ 0 it follows that io1;n ¼ ô1;n ¼ ðn�
1
2
Þpþ Oð1=r4lÞ. And from h2rs

ðlÞ ¼ 0
it follows that o2;n ¼ ðn�

1
2
Þpþ Oð1=r4lnÞ. The eigenvalues ln corresponding to h1rs

ðlÞ ¼ 0 ðh2rs
ðlÞ ¼ 0Þ will be

denoted by l1;n ðl2;nÞ. Now it follows that
ffiffiffiffiffiffiffi
l1;n

p
¼ ðn� 1

2Þp=rsð1þ Oð1=r2n2ÞÞ and
ffiffiffiffiffiffiffi
l2;n

p
¼ ðn� 1

2Þp=
rð1þ Oð1=r2n2ÞÞ. For similar estimates see also Ref. [20].

5. Formal approximations

In this section the vibrations of a standing, uniform Timoshenko beam which is clamped at one end and
free at the other end will be considered. An approximation of the solution of the initial-boundary value
problems (15)–(21) will be constructed by using a two time-scales perturbation method. Conditions like
t40; tX0; 0oxo1 will be dropped for abbreviation. By expanding the unknown functions uðx; tÞ and cðx; tÞ
in a Taylor series with respect to � it follows that

uðx; t; �Þ ¼ û0ðx; tÞ þ �û1ðx; tÞ þ �
2û2ðx; tÞ þ 	 	 	 , (78)

cðx; t; �Þ ¼ ĉ0ðx; tÞ þ �ĉ1ðx; tÞ þ �
2ĉ2ðx; tÞ þ 	 	 	 . (79)

It is assumed that the functions ûiðx; tÞ and ĉiðx; tÞ are Oð1Þ on time-scales of order 1=�. The approximation of
the solution will contain secular terms. Since ûiðx; tÞ and ĉiðx; tÞ are assumed to be Oð1Þ, and because the
solutions are bounded, secular terms should be avoided when approximations are constructed on a time-scale
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of Oð��1Þ. That is why a two time-scales perturbation method is applied. Using such a two time-scales
perturbation method the functions uðx; tÞ and cðx; tÞ are supposed to be a function of x, t, and t ¼ �t. So put

uðx; tÞ ¼ wðx; t; t; �Þ, (80)

cðx; tÞ ¼ jðx; t; t; �Þ. (81)

A result of this is that

ut ¼ wt þ �wt, (82)

utt ¼ wtt þ 2�wtt þ �
2wtt, (83)

ct ¼ jt þ �jt, (84)

ctt ¼ jtt þ 2�jtt þ �
2jtt. (85)

Substitution of Eqs. (80)–(85) into problems (15)–(21) yields

jxx þ
1

r2s2

� �
ðwx � jÞ � r2jtt ¼ 2r2�jtt þ r2�2jtt, (86)

1

r2s2

� �
ðwxx � jxÞ � wtt ¼ 2�wtt þ �

2wtt þ �½ð1� xÞwx�x, (87)

wð0; t; t; �Þ ¼ jð0; t; t; �Þ ¼ 0, (88)

jxð1; t; t; �Þ ¼ 0, (89)

wxð1; t; t; �Þ � jð1; t; t; �Þ ¼ 0, (90)

wðx; 0; 0; �Þ ¼ f ðxÞ and wtðx; 0; 0; �Þ ¼ hðxÞ � �wtðx; 0; 0; �Þ, (91)

jðx; 0; 0; �Þ ¼ pðxÞ and jtðx; 0; 0; �Þ ¼ qðxÞ � �jtðx; 0; 0; �Þ. (92)

Assuming that

wðx; t; t; �Þ ¼ u0ðx; t; tÞ þ �u1ðx; t; tÞ þ �2u2ðx; t; tÞ þ 	 	 	 , (93)

jðx; t; t; �Þ ¼ c0ðx; t; tÞ þ �c1ðx; t; tÞ þ �
2c2ðx; t; tÞ þ 	 	 	 , (94)

then by collecting terms of equal powers in � it follows from Eqs. (86)–(92) that the Oð1Þ-problem is:

c0xx
þ

1

r2s2

� �
ðu0x
� c0Þ � r2c0tt

¼ 0, (95)

1

r2s2

� �
ðu0xx
� c0x

Þ � u0tt
¼ 0, (96)

u0ð0; tÞ ¼ c0ð0; tÞ ¼ 0, (97)

c0x
ð1; tÞ ¼ 0, (98)

u0x
ð1; tÞ � c0ð1; tÞ ¼ 0, (99)

u0ðx; 0; 0Þ ¼ f ðxÞ and u0t
ðx; 0; 0Þ ¼ hðxÞ, (100)

cðx; 0; 0Þ ¼ pðxÞ and c0t
ðx; 0; 0Þ ¼ qðxÞ (101)
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and that the Oð�Þ-problem is:

c1xx
þ

1

r2s2

� �
ðu1x
� c1Þ � r2c1tt

¼ 2r2c0tt
, (102)

1

r2s2

� �
ðu1xx
� c1x

Þ � u1tt
¼ 2u0tt þ ½ð1� xÞu0x

�x, (103)

u1ð0; tÞ ¼ c1ð0; tÞ ¼ 0, (104)

c1x
ð1; tÞ ¼ 0, (105)

u1x
ð1; tÞ � c1ð1; tÞ ¼ 0, (106)

u1ðx; 0; 0Þ ¼ 0 and u1t
ðx; 0; 0Þ ¼ �u0t ðx; 0; 0Þ, (107)

c1ðx; 0; 0Þ ¼ 0 and c1t
ðx; 0; 0Þ ¼ �c0t

ðx; 0; 0Þ. (108)

The solution C0ðx; t; tÞ ¼ ½u0ðx; t; tÞ;c0ðx; t; tÞ�
T of the Oð1Þ-problems (95)–(101) has been determined in the

previous section and is given by

C0ðx; t; tÞ ¼
X1
n¼1

T0nðt; tÞUnðxÞ, (109)

where T0nðt; tÞ ¼ A0nðtÞ cosð
ffiffiffiffiffi
ln

p
tÞ þ B0nðtÞ sinð

ffiffiffiffiffi
ln

p
tÞ, where UnðxÞ ¼ ½fnðxÞ;jnðxÞ�

T is given by Eq. (75),
and where

A0nð0Þ ¼

Z 1

0

f ðxÞfnðxÞ þ r2pðxÞjnðxÞdx, (110)

B0nð0Þ ¼
1ffiffiffiffiffi
ln

p

Z 1

0

hðxÞfnðxÞ þ r2qðxÞjnðxÞdx. (111)

Since the unknown function C1ðx; tÞ ¼ ½u1ðx; t; tÞ;c1ðx; t; tÞ�
T satisfies the same boundary conditions as

C0ðx; t; tÞ, it is assumed that the solution of problems (102)–(108) is given by

C1ðx; t; tÞ ¼
X1
n¼1

T1nðt; tÞUnðxÞ, (112)

where UnðxÞ ¼ ½fnðxÞ;jnðxÞ�
T is given by Eq. (75). Now an equation for the unknown function T1nðt; tÞ will be

determined in the following way: Firstly, substitute Eq. (112) into Eqs. (102) and (103) and multiply the so-
obtained equations by jnðxÞ and fnðxÞ, respectively. Then sum the so-obtained equations. Finally, integrate
the so-obtained equation with respect to x form 0 to 1, and use the orthogonality of the eigenfunctions
UnðxÞ ¼ ½fnðxÞ;jnðxÞ�

T, to obtain:

T1ntt
ðt; tÞ þ lnT1nðt; tÞ ¼ �2T0ntt ðt; tÞ þ

X1
m¼1

YmnT0mðt; tÞ, (113)

where

Ymn ¼

Z 1

0

ð1� xÞfmx
ðxÞfnx

ðxÞdx, (114)

and where T0nðt; tÞ ¼ A0nðtÞ cosð
ffiffiffiffiffi
ln

p
tÞ þ B0nðtÞ sinð

ffiffiffiffiffi
ln

p
tÞ. From T0nðt; tÞ it follows that T0nðt; tÞ and T0ntt ðt; tÞ

are solutions of the homogeneous equation corresponding to Eq. (113), and that T0mðt; tÞ with man are not
solutions of the homogeneous equation corresponding to Eq. (113). Therefore, the right-hand side of Eq. (113)
contains terms which are solutions of the homogeneous equation corresponding to Eq. (113). These terms will
give rise to unbounded terms, the so-called secular terms, in the solution T1nðt; tÞ of Eq. (113). Since it is
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assumed in the asymptotic expansions that the functions u0ðx; t; tÞ, c0ðx; t; tÞ, u1ðx; t; tÞ, c1ðx; t; tÞ, u2ðx; t; tÞ,
c2ðx; t; tÞ; . . . are bounded on time-scales of Oð��1Þ these secular terms should be avoided. In T0nðt; tÞ the
functions A0nðtÞ and B0nðtÞ are still undetermined. These functions will be used to avoid secular terms in the
solution of Eq. (113) in the following way. Let the sum of the terms in the right-hand side of Eq. (113) that
give rise to secular terms in the solution of Eq. (113)be equal to zero, yielding

�2T0ntt ðt; tÞ þYnnT0nðt; tÞ ¼ 0. (115)

By substituting T0nðt; tÞ into Eq. (115) the following system of coupled differential equations for the functions
A0nðtÞ and B0nðtÞ can be obtained:

A0nt ðtÞ ¼ �
Ynn

2
ffiffiffiffiffi
ln

p B0nðtÞ, (116)

B0nt ðtÞ ¼
Ynn

2
ffiffiffiffiffi
ln

p A0nðtÞ, (117)

where A0nð0Þ and B0nð0Þ are given by Eqs. (110) and (111), respectively. From Eqs. (116) and (117) the
functions A0nðtÞ and B0nðtÞ can be determined and are given by

A0nðtÞ ¼ A0nð0Þ cos
Ynnt
2
ffiffiffiffiffi
ln

p

� �
� B0nð0Þ sin

Ynnt
2
ffiffiffiffiffi
ln

p

� �
, (118)

B0nðtÞ ¼ B0nð0Þ cos
Ynnt
2
ffiffiffiffiffi
ln

p

� �
þ A0nð0Þ sin

Ynnt
2
ffiffiffiffiffi
ln

p

� �
, (119)

respectively. By substituting A0nðtÞ and B0nðtÞ into T0nðt; tÞ it follows that

T0nðt; tÞ ¼ A0nð0Þ cos
ffiffiffiffiffi
ln

p
t�

Ynnt
2
ffiffiffiffiffi
ln

p

� �
þ B0nð0Þ sin

ffiffiffiffiffi
ln

p
t�

Ynnt
2
ffiffiffiffiffi
ln

p

� �
, (120)

where Ynn is given by Eq. (114). Now, an Oð�Þ-approximation of the solution of the initial-boundary value
problems (15)–(21) has been determined. This Oð�Þ-approximation is given by Eq. (109), and is valid on time-
scales of Oð��1Þ. It is beyond the scope of this paper to prove that the Oð�Þ-approximation are indeed valid on
time-scales of Oð��1Þ.

From Eq. (120) it follows that an approximation of the frequency (onð�Þ) of the nth mode of a standing
Timoshenko beam in a gravity-field is given by

onð�Þ ¼
ffiffiffiffiffi
ln

p
�
�Ynn

2
ffiffiffiffiffi
ln

p , (121)

where � ¼ grAL3=EI , Ynn is given by Eq. (114), and
ffiffiffiffiffi
ln

p
is the frequency of the nth mode of a gravity-free

Timoshenko beam, which is given by the squareroot of the nth positive root of Eq. (57). Note that the order of
the highest derivatives (with respect to x and t) that appears in problems (15)–(21) with � ¼ 0 and problems
(15)–(21) with �a0 are the same. Therefore, it is assumed that onð�Þ is an Oð

ffiffiffiffiffi
ln

p
�2Þ-approximation of the

magnitude of the frequency. Due to gravity and the self-weight of the beam a linearly varying compression
force is acting on the beam. The second term of the right-hand side of Eq. (121) (i.e. �Ynn=2

ffiffiffiffiffi
ln

p
) represents the

influence of this compression on the frequency of the nth mode of the beam. Since Ynn40 it follows from
Eq. (121) that the inclusion of the compression force in the beam model reduces the magnitude of the
frequency. Now we will study this decrease in magnitude of the frequency. Note that the value of �Ynn=2

ffiffiffiffiffi
ln

p

depends on the parameters �; r, and s and the mode number n. Firstly, it should be observed that the frequency
(onð�Þ) reduces by increasing values of �. Now the influence of r; s, and n on the decrease in magnitude of the
frequencies will be discussed. In the previous section approximate forms the eigenvalues ln have been
constructed for the case r4ln51, and for the case r4lnb1. Therefore, the values of the frequencies will be
considered for the case r4ln51, the case r4ln � 1, and the case r4lnb1. Firstly, the case r4ln51 will be
studied. Now the characteristic equation (57) can be approximated by Eq. (57) with r ¼ 0. This is
the characteristic equation of a cantilevered Euler–Bernoulli beam. The integrand in Ynn is given by
ð1� xÞf2

nðxÞ, where fnðxÞ is given by Eq. (75). Now, fnðxÞ can be approximated by the nth eigenfunction
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Table 1

Numerical approximations of
ffiffiffiffiffi
ln

p
and Ynn=2

ffiffiffiffiffi
ln

p
for the case r2 ¼ 0:01 and s2 ¼ 2:8 and for the case r2 ¼ 0:001 and s2 ¼ 0:5

n r2 ¼ 0:01; s2 ¼ 2:8 r2 ¼ 0:001, s2 ¼ 0:5

ffiffiffiffiffi
ln

p
Ynn

2
ffiffiffiffiffi
ln

p

� � ffiffiffiffiffi
ln

p
Ynn

2
ffiffiffiffiffi
ln

p

� �

1 3.2471 0.2263 3.5038 0.22303

2 14.803 0.2468 21.519 0.19390

3 32.415 0.3377 58.448 0.19687

4 49.649 0.3934 109.98 0.20532

5 65.263 0.2922 173.47 0.07178

6 70.555 0.2604 246.27 0.01801

7 84.075 0.3349 326.22 0.00193

8 92.021 0.4562 411.60 0.00292

9 105.87 0.3324 501.12 0.00409

10 113.75 0.6524 593.77 0.00754
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corresponding to the cantilevered Euler–Bernoulli beam. By using this eigenfunction the integral Ynn can be
approximated by (see Refs. [2,6])

Ynn

2
ffiffiffiffiffi
ln

p ¼
1

4
ffiffiffiffiffi
ln

p ðð1þ
ffiffiffiffiffi
ln

4
p

wnÞ
2
þ 3Þ, (122)

where wn ¼ ðsinð
ffiffiffiffiffi
ln

4
p
Þ � sinhð

ffiffiffiffiffi
ln

4
p
ÞÞ=ðcosð

ffiffiffiffiffi
ln

4
p
Þ þ coshð

ffiffiffiffiffi
ln

4
p
ÞÞ. It should be observed that the value of Ynn=2

ffiffiffiffiffi
ln

p

becomes small compared to the value of
ffiffiffiffiffi
ln

p
for increasing values of the mode number n. Hence it can be

concluded that the decrease in magnitude of the frequency (due to the compression force) will become relatively
small (compared to onð�Þ) by increasing mode number n. Furthermore, from Eqs. (121) and (122) it follows that
the parameters r2 and s2 do not significantly change the frequencies of the oscillation modes when r4ln51.

For the case r4ln � 1 numerical methods can be used to determine the value of Ynn=2
ffiffiffiffiffi
ln

p
. In Table 1 the

first ten values of Ynn=2
ffiffiffiffiffi
ln

p
are listed for the case r2 ¼ 0:01 and s2 ¼ 2:8, and for the case r2 ¼ 0:001 and

s2 ¼ 0:5. For the modes listed in Table 1 the decrease in magnitude of the frequencies due to the compression
force becomes relatively small (compared to onð�Þ) by increasing mode number.

Now consider the case r4lnb1, that is, consider the higher order modes. It should be observed that the
eigenfunctions UnðxÞ ¼ ½fnðxÞ;cnðxÞ�

T for this case are given by Eq. (75), where UnðxÞ and CnðxÞ are given by
Eqs. (60) and (61), respectively. In Section 4 it has been observed that for r4lnb1 two sets of roots of the
characteristic equation (57) can be distinguished. The roots of the first (second) set are denoted by l1;n (l2;n). Now
the value of the approximation of the frequencies (onð�Þ), will be studied for these two sets. The roots of the first set

are given by
ffiffiffiffiffiffiffi
l1;n

p
¼ ½ðn� 1

2Þp=rs� þ Oð1=r3nÞ (see Section 4). Now, it can be shown, by elementary calculations,

that Ynn ¼ ô2
1;n=2ð1þ Oð1=r3

ffiffiffiffiffiffiffi
l1;n

p
ÞÞ. Consequently, from ô2

1;n ¼ r2l1;nðs2 þ Oð1=r4l1;nÞÞ, it follows that

Ynn

2
ffiffiffiffiffiffiffi
l1;n

p ¼
rs n� 1

2

� �
p

4
1þ O

1

r2n

� �� �
. (123)

From Eqs. (121) and (123) it follows that the decrease in magnitude of the frequency due to the compression force
increases by increasing mode number n. Note that this is not the case for a vertical, cantilevered Euler–Bernoulli
beam (see Refs. [2,6]). Hence the inclusion of shear deformation and rotatory inertia increases the decrease in
magnitude (due to the compression force) of the frequencies of a vertical, cantilevered beam. Now by substituting
Eq. (123) and

ffiffiffiffiffiffiffi
l1;n

p
¼ ðn� 1

2
Þp=rsþ Oð1=r3nÞ into Eq. (121) it follows that onð�Þ is approximately given by

onð�Þ ¼
n� 1

2

� �
p

rs

� �
1�

�r2s2

4

� �
. (124)

Thus the frequencies reduces by increasing values of the parameters �; r, and s.
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Fig. 3. (a) The effect of gravity Ynn=2
ffiffiffiffiffi
ln

p
plotted against the frequency

ffiffiffiffiffi
ln

p
for the case r2 ¼ 0:01 and s2 ¼ 2:8. (b) The relative

(compared to
ffiffiffiffiffi
ln

p
) effect of gravity (in per cent) for the case r2 ¼ 0:01 and s2 ¼ 2:8.
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For the second set of roots ð
ffiffiffiffiffiffiffi
l2;n

p
Þ of Eq. (57) it can be shown that

Ynn ¼
s2

2r2ð1� s2Þ2

� �
ð1þ ð1=s2ÞÞcos2ðô1;nÞ þ ðsinðô1;nÞ � s sinðo2;nÞÞ

2

cos2ðô1;nÞ
þ O

1

r3
ffiffiffiffiffiffiffi
l2;n

p
 ! !

. (125)

Eq. (125) leads to Ynn ¼ Oðr�2Þ. Now, since
ffiffiffiffiffiffiffi
l2;n

p
¼ ððn� 1

2
Þp=rÞ þ Oð1=r3nÞ (see Section 4), it follows from

Eq. (121) that the frequencies are approximately given by
ffiffiffiffiffiffiffi
l2;n

p
ð1þ Oð�=n2ÞÞ. Hence it follows that the

decrease in the magnitude of the frequency (due to the compression force) decreases by increasing mode
number n. Moreover, it can be concluded that the decrease in magnitude of the frequencies for the second set is
significantly smaller compared to the decrease in magnitude of the frequencies corresponding to the first set of
roots of the characteristic equation (57).

In Fig. 3(a) the values of Ynn=2
ffiffiffiffiffi
ln

p
and

ffiffiffiffiffi
ln

p
are given for the case r2 ¼ 0:01 and s2 ¼ 2:8. From this figure it

can also be observed that the for the higher order modes two sets of frequencies can be distinguished. For the
first set there is a predominantly linear relationship between the values of Ynn=2

ffiffiffiffiffi
ln

p
and

ffiffiffiffiffi
ln

p
. For the

second set the value of Ynn=2
ffiffiffiffiffi
ln

p
tends to zero for increasing values of

ffiffiffiffiffi
ln

p
. In Fig. 3(b) the relative influence

(in per cent) of Ynn=2ln on
ffiffiffiffiffi
ln

p
is presented. From this figure it can be observed that Ynn=2

ffiffiffiffiffi
ln

p
is relatively

small compared to
ffiffiffiffiffi
ln

p
. For the first set of frequencies this percentage tends to 0:7. Note that this value is

exactly equal to 100r2s2=4 for the case r2 ¼ 0:01 and s2 ¼ 2:8 (see also Eq. (124)).
5.1. An example

In this subsection the effect of gravity on the natural frequencies of a tall building will be examined. The
building has a square cross-section, and the parameters of this building are given by E ¼ 25� 109 Nm�2,
I ¼ 2:5� 103 m4, L ¼ 180m, r ¼ 280 kgm�3, A ¼ 1225m2, and g ¼ 9:81m s�2. Moreover, G ¼ E=2ð1þ nÞ
and k ¼ 5þ 5n=6þ 5n, in which n ¼ 0:2 is Poisson’s ratio. Hence, the non-dimensional parameters r2; s2, and �
are given by 6:30� 10�5; 2:8, and 0.314, respectively. The building is modelled as a Timoshenko beam. Now
the first ten natural frequencies (On) of the building are listed in Table 2. It can be observed from this table that
the effect of gravity ðsnÞ on the natural frequency ðOnÞ is largest for the first bending mode. There is a
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Table 2

The effect of gravity (sn) on the first ten natural frequencies (On) of a tall building in Hertz (Hz) and in per cent (%) for the case

r2 ¼ 6:30� 10�5; s2 ¼ 2:8, and � ¼ 0:314

n On (in Hz) sn (in Hz)
100

sn

On

� �
(in %)

1 0.2284 �0.00465 �2.0366

2 1.4513 �0.00409 �0.2818

3 4.0496 �0.00423 �0.1043

4 7.8792 �0.00446 �0.0567

5 12.903 �0.00463 �0.0359

6 19.055 �0.00476 �0.0250

7 26.265 �0.00488 �0.0186

8 34.455 �0.00506 �0.0147

9 53.467 �0.00035 �0.0007

10 64.130 �0.00052 �0.0001
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reduction of 2.04% in the first natural frequency. For the other modes in Table 2 this effect is small, that is,
smaller than 0:3%. In this section it has been shown that the effect of gravity increases by increasing mode
number. For this tall building this is also the case. However, the effect of gravity will be relatively small
compared to the magnitude of the natural frequency since the parameters r2 and � are small.

6. Conclusions

In this paper the transverse vibrations of a standing, cantilevered Timoshenko beam have been considered.
Due to gravity and due to the self-weight of the beam a linear varying compression force is acting on the beam.
It was assumed that the compression force is small but not negligible. Inclusion of the compression force into
the beam model reduces the magnitude of the frequencies of the beam. In this paper this decrease in magnitude
of the frequencies has been studied. Note that the results found in this paper can also be applied to hanging
beams. In this case a linearly varying tensile force is acting on the beam. Inclusion of this force into the beam
model results in an increase in the magnitude of the frequencies of the beam. In Ref. [8] the natural frequencies
of a hanging beam under gravity has been studied. Here, it has been concluded that the influence of gravity on
the frequencies of the hanging beam reduces by increasing mode number. In this paper similar results has been
found for the lower order modes: the decrease in magnitude of the frequency due to the compression force will
become relatively small (compared to the magnitude of the frequency) by increasing mode number. However,
it also has been found that the frequencies of the higher order modes can be separated into two sets of
frequencies. For the first set of frequencies it has been found that the decrease in magnitude of the frequency
due to the compression force increases significantly by increasing mode number. Moreover, it has been
concluded that the inclusion of shear deformation and rotatory inertia into the beam model increases the
decrease in magnitude (due to the compression force) of the frequencies of a standing, cantilevered beam. And
consequently, these inclusions into the beam model of a hanging beam results in an increase in magnitude of
the frequencies. Note that this is different from the conclusion in Ref. [8], where it has been stated that these
inclusions reduces the increases in the higher mode frequencies of the hanging beam due to gravity effects. For
the second set of frequencies it has been concluded that the decrease in magnitude of the frequencies is less
significant compared to the decrease in magnitude of the frequencies of the first set.
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